
AD-AM 4" AMOY RESEARCH AND TECHNOLOGY LABS CLEVELAND O*1 PROPU--ETC F/S 21/5
THE RESPONSE OF TURBINE ENGINE ROTORS TO INTERFERENCE RUSS. (U)

UNLS IFIE SO 8 A F KASCAK "



II~ ~ ~ 3 IIIIILL11112.5

IIMICROCP RO LIONE C

MICROCOPY RESOLUTION TEST CHART



I
*I(ASCAK h

S..~ THE RESPONSE OF TURBINE ENGINE ROTORS
/ TO INTERFERENCE RUBS

("'j AU . .JN 1880

- - ALIRERT F.)KASCAKIMR. 1- / ) . 8
PR 0 EPRULS z AMY AVRADCOM

LEWIS RESEARCH CENTER, NASA / '7

CLEVELAND, OHIO 44135

INTRODUCTION

In a typical aircraft gas turbine there are many instances in
which rotor rubs occur. Two of the most common are blade tip and seal
rubs, which are caused by thermal mismatch, rotor imbalance, high "g"
maneuver loads, aerodynamic forces, etc. Current interest in fuel
efficiency is a consideration which drives the engine design toward
closer operating clearances. Thus increasing the probablity of rotor
rubs. The interaction of a rotor with its case, (rotor rubs), has
been studiedoi. -zf I a- 2C- Aef . steady state interaction
between a rotor with a rigid case neglecting friction at the interface
and Rf 9 -1-dadQ a steady state interaction between a linear
flexible rotor and case including friction at the interfac 1f 1 a.- 4
2 4--at-e-stid he critical transient situation in whic1 the rotor
bounces off the case__ .,.

It is known that4 rotor rubs can have an important effect on the
>b" rotor dynamics. When a rotor rubs on the case, a frictional force is
CL. generated which can drive a rotor to whirl in a direction opposite to
Co the direction of rotation, (backward whirl). This frictional force is
C- relatively constant up to the backward whirl speed at which the rotor
LAp rolls around the case. Since this rolling contact speed is

jproportional to the rotational speed of the rotor times the ratio of
"the diameter to the rotor clearance, the whirl speed can be hundreds

of times the rotational speed of the rotor; and thus be potentially

2very dangerous.

There ard two basic methods for studying transient rotor
dynamics. One is the modal -nethod (ref 3 and 4) which expands the
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solution in terms of a few of the lower frequency mode shapes. If the
transient under study is localized (like a blade loss or a rotor rub),
the high frequency components are, at least initially, dominant. Thus
the modal method is not applicable to this type of transient. The
other method involves the direct integration of the equations of
motion, which can be done in either of two ways, explicit or implicit
integration. For example, ref 5 used explicit integration of the

equation of motion, but this solution is plagued with numerical
stability problems. Further, ref 6 showed that explicit integration of
the equation of motion was unstable when the product of the critical
frequency (for any mode numerically possible) and the time step was
large. Therefore, the explicit integration can only be done for simple
rotors.

In contrast, the implicit integration tends to be stable (ref 7
and 8); but it requires the solution of a large number of nonlinear
simultaneous equations at each time step. Ref 9 used a technique
similar to ref 7 except that it was applied directly to the second
order equation of motion. Ref 9 also noted that the generalized
forces on a rotor were functions of the generalized position and
velocity of the point where the forces were applied and its nearest
axial neighbors. This allowed the variables to be arranged so that the
Jacobian of the set of nonlinear equations was block tridiagonal.
Therefore, computing time became proportional to the number of
elements in the rotor dynamics model rather than to the cube of the
number of elements. The objective of this study is to refine the
method used in ref 9 to include an automatic time step routine; and
then apply the technique to study blade loss induced rotor rubs. The
automatic time step routine is necessary so that the time step can be
varied as the rotor impacts the case. Also, the numerical stability
of the taethod used in ref 9 will be investigated.

SYMBOLS

a reference amplitude or-
c radial clearance For F
E absolute error estimate U T7S C7'P &
F force7,
0 order of error in Taylor series
q order of Taylor series
r radial displacement ..
S stability matrix

t time
At time step \ "
u defined in eq.(4)
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z independent variable
a given set of constants
rdamping ratio
x eigenvalue of stability matrix

coefficient of friction
W frequency

ANALYS IS

Numerical i.e tration:

t+ " Given an arbitrary vector function I k(t) whose derivatives exist,
Zk (t), a Taylor series expansion can be written:

'k(t + At) - Z J) Zk(t) + Oq( k

J-0

with remainder of order oq-k . If the arbitrary function is chosen as:

k

ic ak!r

tht Taylor series for this function becomes:
q

~k(t + At) -f ( ) + q(3A)
J-0

where the binomial coefficients are defined as:

( f (3)

k) 0 for j < k

If the form of the remainder is chosen as:

qm 01 (4)

the Taylor series becomes;

q

zk(t + At) F Zj (t) + Ck (k , (Jk) k(5)
J-O
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where the alphas are given in ref 7 and u can be determined from the
equations of motion at the advanced time. The form of the set of the
equations of motion at the advanced time is:

EF(r, r, r, t + At) - 0 (6)

4.
From the definition of z , the various derivatives become:

*(k) ak'
(At)k Zk (7)

Substituting for the various derivatives into the equations of motion;
and knowing the values at the previous time, result in the equations
of motion being a function of:

F(u, t + At) = 0 (8)

This set of equations can be solved for u and, from this value of u,
the remainder can be used as an error estimate to control the time

F r4
step. From the definition, ZI represents a nondimensional form Of
Therefore an estimate of the maximum absolute error is:

E - alI [all (9)

where I(tut 1, the vector norm is the maximum component of U. The
computer code used in ref 9 was modified to include the following
automatic time step althrogim. If E>.01%, re-do the calculation with
the time step reduced by a factor of 10. If .01%>E>.0O1%, accept the
calculation but decrease the time step by a factor of 2. If
.001%>E>.O001Z, accept the calculation and maintain the same time
step. If .0001>E, accept the calculation but increase the time step
by a factor of 2.

Numerical stability:

The analysis of the stability of the numerical integration
technique assumes a model of a rotor bearing system that is linearized
at some instant of time. The homogeneous equation of motion for any
mode is%

2
r+ 2wtr + w r - 0 (10)

where omega is the natural frequency and zeta is the damping ratio for
the mode. For every mode that is numerically possible, with
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nonnegative damping ratio, the amplitude must either remain constant
or decay in time. The numerical integration is defined as unstable if
the amplitude grows in time.

Substituting the Taylor series for the various derivatives into
the modal equation of motion at the advanced time results in:

1) + 21 .. . ZAtt ;(1(1))-u Lr2m + 2o1 At ;+ a0(w At)2

J.0

For this value of u. the Taylor series expresses the solution at the
advanced time in terms of the solution at the present time as:

(j -1 + 2jw At + CW At) i
Z1 (t + At) k z t) (12)k2a 2 + 2 WAt C+ C0 (w At) 2

Defining the matrix S to be:

5
k j (j)_ -kFJ(j - 1) + 2jwAt ;+ (w At) 2I (13)[20 2 + 2a1WAt + 0 (1 At)2

and the vector Z whose kth element is zk results in the finite
difference equation:

1(t + At) - SI(t) (14)

This equation has a solution of the formt

+ At) - XI(t) (15)

where lambda is an eigenvalue of!

S1- (16)

If the IX I>, the amplitude grows and the method is numerically
unstable.
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Rub model:

The interaction of a rotor with its case is a complicated
phenomenon. It can involve non-linear deformation of both the rotor
and the case. Rotor-case rubs were experimentally studied in ref 10.

Analytically only simple rotor-case rub models are available;
therefore, the case was assumed to be linear with dry friction
interaction with the rotor. The radial and tangential forces on the
rotor are then:

F O, F W 0 r<C (1 7A)

" -k(IrI - C), Fe - F I C (17B)Fr8 r

RESULTS AND DISCUSSION

The numerical method of ref 9 employed a second order integrator
with a constant time step. However, to study blade loss induced rotor
rubs, it is necessary to modify the method of ref 9 to include higher
order integrators with an automatic tine step routine. The automatic
time step routine is necessary so that the time step can he varied as
the rotor impacts the case. In order to calculate high frequency
components accurately, the time step must be less than the period of
the high trequency component. When only low frequency components are
important the time step can be increased to decrease computing time.
The algorithm discribed in the analysis section keeps the maximm
error in the displacement at less than .01%. It tries to maintain the
error between .001% to .0001% by either decreasing or increasing the

time step.

Another way to decrease computing time is to use a higher order
integrator. Ref 7 studied the numerical stability of up to a sixth
order integrator applied to a first order differential equation. The
numerical stability of these integrators applied to a second order
differential equation was given in the analysis section. The
numerical stability of an integrator is based on modal rotor dynamics
analysis. If the integrator is applied to a mode which i- not driven
and has damping, the amplitude must decay in time. Figure I shows a
stability map for the integrators used in ref 7 applied to a second
order differential equation. The abscissa is the damping ratio and the
ordinate is the product of the time step and natural frequency for the
mode. The stability map has contours on it for which the amplitude
does not change from one time to the next. On one side of the contour

314



*KASCAK

tue amplitude grows; (unstable region), and on the other side it
decays, (stable region).

Figure I shows the stable regions for a fourth through sixth
order integrator. The second and third order integrators were stable
everywhere. For the regions where the integrators were unstable, the
amplitude grew by a few percent per time step. It would take on the
order of a hundred time steps for the amplitude to double, and it
would take on the order of a thousand time steps for the amplitude to
increase by a factor of a thousand. Due to round off errors, every
mode that is numerically possible in the rotor dynamics model, has a
finite amplitude. These amplitudes may be small; but if they are in an
unstable region, in a few thousand time steps they can become very
large. For this reason, only the second and third order integrators
were used. This is still a vast improvement over other types of
integrators such as the one used by NASTRAN. HASTRAN uses an implicit
form of the Newmark-Beta integrator, ref 8. This integrator is second
order and does not have an error estimate.

The rotor-bearing system described in ref 11, (which dynamically
simulates a typical small gas turbine), was used as the example
problem. This rotor bearing system consisted of a shaft with three
disks mounted on two axially preloaded ball bearings (fig 2). In this
rotor-bearing system the bearings were mounted in squeeze-film damper
journals, and the journals had centering springs.

The first three critical speeds for the rotor bearing system
without oil in the dampers are shown in figure 3. Note that all the
modes are bent- shaft modes. The "classical" hierarchy only applies

to stiff shafts; therefore, the classical mode shapes do not
characterize the actual mode shapes. The first mode, about 7600 rpm,
classically would be the cylindrical node. But in this case, it has a
large amount of bending outward near the shaft center. The second
mode, about 9200 rpm, classically would be the conical mode. In this
case, it has a slight amount of bending outward near the shaft ends.
The third mode, about 11200 rpm, classically would be the bending
mode. In this case, it has a large amount of bending throughout the
shaft.

The rotor-bearing system was modeled by using 23 elements. Prior
to the blade loss simulation the rotor was assumed to be balanced and
operating at 9500 rpm. The blade loss was simulated by an
instantaneous application of 5 mils of mass excentricity in the far
disk. The equations of motion for this system were directly
integrated by the method used in ref 9 with a variable time step. The
output was interpolated to equal time steps; (100 time steps per shaft

315

.. .-c . . . .........3.) _:i
' & '" = ': 5 '



*KASCAK

rotation)., and displayed on a CRT, figure 4. The display showed an
oblique view of the rotor bearing system, with the bearing center line

as the oblique axis. The transverse vibration is indicated by the
position of the rotor centerline. The scale of the transverse
vibration exaggerates the amplitude of the vibration. The display on
the CRT was photographed at each time step. These photographs were
then shown as a motion picture.

Figure 5 shows the superposition of the first ten frames of the
blade loss simulation without a rub. Initially the rotor, the
bearing, and the mass center line coincided. After the blade loss, a
traveling wave starts at the blade loss disk and travels down the
rotor. During the time high frequency components are dominant,
(because the rotor as a whole is not moving). A model analysis which
only uses the lower modes cannot discribe the motion during this time
period.

Figure 6 shows the position of the rotor for the first six
rotations of the rotor after blade loss without a rub taking place.
During the first rotation, the blade loss disk spirals out. During
the second rotation, the disk on the other end of the shaft spirals
out. During the third rotation, the center disk spirals out. After
this the envelope of the rotor positions, seems to oscillate in a
conical fashion, with a frequency of about 1/4 operating speed. This
beating seems to be at a frequency difference between the operating
speed and the Ist critical speed. (Ref 12 experimentally showed a
similiar beat frequency between the operating speed and the critical
speed.) During this time the rotor shape resembles the third critical,
except that the bearing center line is not in the plane of the rotor.
The maximum amplitude occurred on the blade loss disk on the sixth
rotation and on the opposite disk on the fourth rotation. The
conclusion drawn from this figure is that if there is clearance space
down the rotor and a rub occurs, it does not necessarily occur at the
blade loss disk first.

The rotor-case rub was simulated by surrounding each disk with a
shroud that had a 2 Tail radial clearance and a stiffness of
100,000#/in. The rub was induced by a repeat of the blade loss
simulation with the clearance restrain. Two rub simulations were run,
one with a coefficient of friction of .1 and the other with a
coefficient of friction of .2.

Figure 7 shows the first 6 rotations of the shaft after blade
loss for a coefficient of friction of .1. During the first shaft
rotation the blade loss disk spirals outward and bounces off the case
four times. Each collision of the rotor with the case sends out
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traveling waves down the rotor. These waves interact with each other
causing the envelope of the rotor motion to be very complicated. On
the second shaft rotation both outboard disks bounce off the case four
times. A the rotor continues to turn the orbit becomes more
circular. That is, the rotor-case interaction becomes less of a
bouncing nature and sore of a continuous contact. The envelope of
the rotor motion seems to be oscillating in a conical nature; but both
outboard disks seem to remain in contact with the case. The rotor
continues to whirl about the bearing centerline in the rotational
direction (forward whirl). The frictional drag forces are not large
enough to drive the rotor into backward whirl.

Figure S shows the first 4 rotations of the shaft after blade
loss for a coefficient of friction of .2. The motion of the rotor on
the first rotation is similar to the .1 coefficient of friction case.
On the second rotation, the blade loss disk has a very hard collision
with the wall, causing the rotor to bend considerably. On the third
rotation the rotor whirl direction changes from forward to backward
whirl and the rotor whirl begins to accelerate in the backward
direction. On the fourth rotation, the rotor motion becomes very
large and it continues to grow on succeeding rotations.

This exanple problen has shown that small changes in the
coefficient of friction, (froto .1 to .2) can change a rotor response
to a blade loss condition from a relatively safe response to a
catastrophic response. Lbr seal rubs the coefficient of friction is
probably between .1 to .2. For blade tip rubs, this rub model is not
accurate. This type of rub involves material removal, phase change,
and or non-elastic deformations. If this model were to be used in a
general manner, then the coefficient of friction would probably be
greater then .2.

In conclusion, this computer code allows us to look at blade loss
induced rotor rubs and displays the rotor notion in a motion-picture
format. A 10-minute, 16-millimeter, color, sound motion-picture
supplement is available, on loan, that shows the computer made inotion
picture for the blade loss induced rotor rubs.

SIMIARY OF RESULTS AV CONCLUSIONS

A method for direct integration of a rotor dynamics system
experiencing a blade loss indited rotor rub was developed. 711e
followin, conclusions were drawn:

1. The method was nunerically stable for qny time step up to n thlirl
order Inte-,rator.
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2. The time step was controlled so that the maximum error was less
then .01% and the probable error was between .001% to .0001%.

3. For the rotor typical of small gas turbines a small change in the
coefficient of friction, (from .I to .2), caused the rotor to change
from forward to backward wirl and to destroy itself in a few
rotations.
This method provides an analytical capability to study the
susceptibility of rotors to rub induced backward whirl problems.
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Figure 1. - Numerical stability of Gear's Integra-
tion method applied to a second order differ-
ential equation for a 2nd thru 61h order of in-
teg ration. The 2nd and 3rd order methods are
always stable.
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Figure 3. - Critical speeds and mode shapes. Figure 4. - Oblique view of rotor centerline whirling
about the bearing centerline.
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Figure 5. - Initial movement of rotor after
blade loss.
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()FIRST ROTATION. (b) SECOND ROTATION.

(c) THIRD ROTATION. (d) FOURTH ROTATION.

Figure 6. -Envelope of rotor motion for first six rotation~s of rotor after blade loss (without a rub taking placel.
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/4 (a) FIRST ROTATION. (b) SECOND ROTATION.

ciTHIRD ROTATION. (d) FOURTH ROTATION.

(e I FIFrH ROTATION. (f) SIXTH ROTATION.

Figure?. - EnveloPe of rotor motion for first six rotations of rotor altr bladle toss (coefficient of
friction equals 0. IL.
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(c) THIRD ROTATION. W1l FOURTH4 ROrArfOA.

Figure& -EnvekoPe of rotor motion for first four rotations of rotor after blade toss (coefficient of f riction equals 0. 2L
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